Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Atmos ; 129(1): e2023JD039505, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38440118

RESUMO

Upward lightning (UL) has become a major threat to the growing number of wind turbines producing renewable electricity. It can be much more destructive than downward lightning due to the large charge transfer involved in the discharge process. Ground-truth lightning current measurements indicate that less than 50% of UL could be detected by lightning location systems (LLS). UL is expected to be the dominant lightning type during the cold season. However, current standards for assessing the risk of lightning at wind turbines mainly consider summer lightning, which is derived from LLS. This study assesses the risk of LLS-detectable and LLS-undetectable UL at wind turbines using direct UL measurements at instrumented towers. These are linked to meteorological data using random forests. The meteorological drivers for the absence/occurrence of UL are found from these models. In a second step, the results of the tower-trained models are extended to a larger study area (central and northern Germany). The tower-trained models for LLS-detectable lightning are independently verified at wind turbine sites in this area and found to reliably diagnose this type of UL. Risk maps based on cold season case study events show that high probabilities in the study area coincide with actual UL flashes. This lends credibility to the application of the model to all UL types, increasing both risk and affected areas.

2.
J Geophys Res Atmos ; 128(10): e2022JD037776, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38439996

RESUMO

Upward lightning is rarer than downward lightning and requires tall (100+ m) structures to initiate. It may be either self-initiated or triggered by other lightning discharges. While conventional lightning location systems (LLSs) detect most of the upward lightning flashes superimposed by pulses or return strokes, they miss a specific flash type that consists only of a continuous current. Globally, only few specially instrumented towers can record this flash type. The proliferation of wind turbines in combination with damages from upward lightning necessitates an improved understanding under which conditions self-initiated upward lightning and the continuous-current-only subtype occur. This study uses a random forest machine learning model to find the larger-scale meteorological conditions favoring the occurrence of the different phenomena. It combines ground truth lightning current measurements at the specially instrumented tower at Gaisberg mountain in Austria with variables from larger-scale meteorological reanalysis data (ERA5). These variables reliably explain whether upward lightning is self-initiated or triggered by other lightning discharges. The most important variable is the height of the -10°C isotherm above the tall structure: the closer it is, the higher is the probability of self-initiated upward lightning. For the different flash types, this study finds a relationship to the larger-scale electrification conditions and the LLS-detected lightning situation in the vicinity. Lower amounts of supercooled liquid water, solid, and liquid differently sized particles and no LLS-detected lightning events nearby favor the continuous-current-only subtype compared to the other subtypes, which preferentially occur with LLS-detected lightning events within 3 km from the Gaisberg Tower.

3.
J Geophys Res Atmos ; 124(24): 14198-14219, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-32363128

RESUMO

In this paper, a full-wave two-dimensional Finite-Difference-Time-Domain model is developed to evaluate the propagation effects of lightning electromagnetic fields over mountainous terrain in the Earth-ionosphere waveguide. In the model, we investigate the effect of the Earth-ionosphere waveguide structure and medium parameters, including the effect of the ionospheric cold plasma characteristics, the effect of the Earth curvature, and the propagation effects over mountainous terrain. For the first time, the obtained results are validated against simultaneous experimental data consisting of lightning currents measured at the Säntis Tower and electric fields measured in Neudorf, Austria, located at 380-km distance from the tower. It is shown that both the time delays and amplitudes of the lightning electromagnetic fields at 380-km distance can be strongly affected by the ionospheric electron density profile, the mountainous terrain, and the Earth curvature. After taking into account the effect of the irregular terrain between the Säntis Tower and the field measurement station, the vertical electric fields calculated by using our model are found to be in good agreement with the corresponding measured cases occurred in both daytime and nighttime. The ideal approximation used in either the classical solutions or the simplified models might lead to inaccuracies in the estimated reflection height. Furthermore, we discuss the sensitivity of our results by considering different return stroke models, as well as different typical values of the return stroke speed and of the ground conductivity.

4.
BMJ Case Rep ; 20092009.
Artigo em Inglês | MEDLINE | ID: mdl-21734915

RESUMO

The case of a 23-year-old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was sent into a drug-induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise largely recovered. Neuropsychological tests revealed deficits in fast visual detection tasks and non-verbal learning and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. At 4 months after the accident, she developed a psychological reaction consisting of nightmares, with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning strike were retrospectively retraced.

5.
J Neurol Neurosurg Psychiatry ; 78(4): 423-6, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17369595

RESUMO

The case of a 23-year-old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was set to a drug-induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise recovered largely. Neuropsychological tests revealed deficits in fast visual detection tasks and non-verbal learning, and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. Four months after the accident, she developed a psychological reaction consisting of nightmares with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning flash were retrospectively retraced.


Assuntos
Alucinações/etiologia , Lesões Provocadas por Raio/complicações , Córtex Visual/lesões , Adulto , Depressão/etiologia , Sonhos , Feminino , Humanos , Deficiências da Aprendizagem/etiologia , Montanhismo , Lobo Temporal/lesões , Fatores de Tempo , Perfuração da Membrana Timpânica/etiologia , Transtornos da Visão/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...